home *** CD-ROM | disk | FTP | other *** search
MacBinary | 1996-04-10 | 4.0 KB | [TEXT/MPad] |
open in:
MacOS 8.1
|
Win98
|
DOS
browse contents |
view JSON data
|
view as text
This file was processed as: MacBinary
(archive/macBinary).
Confidence | Program | Detection | Match Type | Support
|
---|
10%
| dexvert
| MacBinary (archive/macBinary)
| fallback
| Supported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| MacBinary II, Wed Apr 10 14:34:35 1996, modified Wed Apr 10 14:34:35 1996, creator 'MPad', type ASCII, 3389 bytes "minimize" , at 0xdbd 398 bytes resource
| default (weak)
| |
99%
| file
| data
| default
| |
74%
| TrID
| Macintosh plain text (MacBinary)
| default
| |
25%
| TrID
| MacBinary 2
| default (weak)
| |
100%
| siegfried
| fmt/1762 MacBinary (II)
| default
| |
100%
| lsar
| MacBinary
| default
|
|
id metadata |
---|
key | value |
---|
macFileType | [TEXT] |
macFileCreator | [MPad] |
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 00 08 6d 69 6e 69 6d 69 | 7a 65 00 00 00 00 00 00 |..minimi|ze......|
|00000010| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000020| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000030| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000040| 00 54 45 58 54 4d 50 61 | 64 00 00 00 00 00 00 00 |.TEXTMPa|d.......|
|00000050| 00 00 00 00 00 0d 3d 00 | 00 01 8e ad 91 af bb ad |......=.|........|
|00000060| 91 af bb 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000070| 00 00 00 00 00 00 00 00 | 00 00 81 81 8a 3d 00 00 |........|.....=..|
|00000080| 2d 2d 20 50 65 72 66 6f | 72 6d 20 6d 75 6c 74 69 |-- Perfo|rm multi|
|00000090| 64 69 6d 65 6e 73 69 6f | 6e 61 6c 20 66 75 6e 63 |dimensio|nal func|
|000000a0| 74 69 6f 6e 20 6d 69 6e | 69 6d 69 7a 61 74 69 6f |tion min|imizatio|
|000000b0| 6e 2e 0d 7e 20 54 68 65 | 20 75 73 65 72 20 6d 75 |n..~ The| user mu|
|000000c0| 73 74 20 73 75 70 70 6c | 79 3a 0d 0d 22 66 28 70 |st suppl|y:.."f(p|
|000000d0| 61 72 6d 73 29 22 20 20 | 54 68 65 20 66 75 6e 63 |arms)" |The func|
|000000e0| 74 69 6f 6e 20 74 6f 20 | 62 65 20 6d 69 6e 69 6d |tion to |be minim|
|000000f0| 69 7a 65 64 20 77 68 65 | 72 65 0d 20 20 20 20 20 |ized whe|re. |
|00000100| 20 20 20 20 20 20 20 22 | 70 61 72 6d 73 22 20 69 | "|parms" i|
|00000110| 73 20 61 6e 20 61 72 72 | 61 79 20 6f 66 20 70 61 |s an arr|ay of pa|
|00000120| 72 61 6d 65 74 65 72 73 | 2e 0d 22 67 75 65 73 73 |rameters|.."guess|
|00000130| 22 20 20 20 20 20 41 6e | 20 61 72 72 61 79 20 20 |" An| array |
|00000140| 6f 66 20 69 6e 69 74 69 | 61 6c 20 70 61 72 61 6d |of initi|al param|
|00000150| 65 74 65 72 20 76 61 6c | 75 65 73 2e 0d 22 64 65 |eter val|ues.."de|
|00000160| 6c 74 61 73 22 20 20 20 | 20 49 6e 69 74 69 61 6c |ltas" | Initial|
|00000170| 20 73 74 65 70 20 73 69 | 7a 65 20 66 6f 72 20 74 | step si|ze for t|
|00000180| 68 65 20 70 61 72 61 6d | 65 74 65 72 73 2e 0d 20 |he param|eters.. |
|00000190| 20 20 20 20 20 20 20 20 | 20 20 20 49 66 20 74 68 | | If th|
|000001a0| 65 20 70 61 72 61 6d 65 | 74 65 72 73 20 68 61 76 |e parame|ters hav|
|000001b0| 65 20 64 69 66 66 65 72 | 65 6e 74 0d 20 20 20 20 |e differ|ent. |
|000001c0| 20 20 20 20 20 20 20 20 | 73 63 61 6c 65 20 73 69 | |scale si|
|000001d0| 7a 65 73 2c 20 22 64 65 | 6c 74 61 73 22 20 73 68 |zes, "de|ltas" sh|
|000001e0| 6f 75 6c 64 20 64 65 66 | 69 6e 65 20 61 6e 0d 20 |ould def|ine an. |
|000001f0| 20 20 20 20 20 20 20 20 | 20 20 20 61 72 72 61 79 | | array|
|00000200| 20 77 69 74 68 20 61 20 | 73 74 65 70 20 73 69 7a | with a |step siz|
|00000210| 65 20 66 6f 72 20 65 61 | 63 68 2c 0d 20 20 20 20 |e for ea|ch,. |
|00000220| 20 20 20 20 20 20 20 20 | 6f 74 68 65 72 77 69 73 | |otherwis|
|00000230| 65 20 61 20 73 63 61 6c | 61 72 20 63 61 6e 20 62 |e a scal|ar can b|
|00000240| 65 20 75 73 65 64 2e 0d | 22 74 6f 6c 22 20 20 20 |e used..|"tol" |
|00000250| 20 20 20 20 54 68 65 20 | 74 65 72 6d 69 6e 61 74 | The |terminat|
|00000260| 69 6f 6e 20 63 72 69 74 | 65 72 69 61 20 62 61 73 |ion crit|eria bas|
|00000270| 65 64 20 6f 6e 20 74 68 | 65 0d 20 20 20 20 20 20 |ed on th|e. |
|00000280| 20 20 20 20 20 20 61 6d | 6f 75 6e 74 20 6f 66 20 | am|ount of |
|00000290| 63 68 61 6e 67 65 20 69 | 6e 20 70 61 72 61 6d 65 |change i|n parame|
|000002a0| 74 65 72 20 76 61 6c 75 | 65 73 2e 0d 20 20 20 20 |ter valu|es.. |
|000002b0| 20 20 20 20 20 20 20 20 | 41 20 74 6f 6c 20 6f 66 | |A tol of|
|000002c0| 20 31 2e 30 65 2d 36 20 | 67 69 76 65 73 20 61 62 | 1.0e-6 |gives ab|
|000002d0| 6f 75 74 20 33 20 64 69 | 67 69 74 0d 20 20 20 20 |out 3 di|git. |
|000002e0| 20 20 20 20 20 20 20 20 | 61 63 63 75 72 61 63 79 | |accuracy|
|000002f0| 2e 0d 0d 54 68 65 20 72 | 6f 75 74 69 6e 65 20 22 |...The r|outine "|
|00000300| 6d 69 6e 69 6d 69 7a 65 | 22 20 73 74 65 70 73 20 |minimize|" steps |
|00000310| 75 6e 74 69 6c 20 61 20 | 6d 69 6e 69 6d 75 6d 20 |until a |minimum |
|00000320| 69 73 20 66 6f 75 6e 64 | 2e 0d 41 66 74 65 72 20 |is found|..After |
|00000330| 6d 69 6e 69 6d 69 7a 65 | 20 69 73 20 72 75 6e 20 |minimize| is run |
|00000340| 74 68 65 20 66 6f 6c 6c | 6f 77 69 6e 67 20 67 6c |the foll|owing gl|
|00000350| 6f 62 61 6c 73 20 61 72 | 65 20 73 65 74 3a 0d 0d |obals ar|e set:..|
|00000360| 22 6d 69 6e 70 22 20 20 | 54 68 65 20 73 6f 6c 75 |"minp" |The solu|
|00000370| 74 69 6f 6e 20 70 61 72 | 61 6d 65 74 65 72 20 61 |tion par|ameter a|
|00000380| 72 72 61 79 0d 22 70 22 | 20 20 20 20 20 54 68 65 |rray."p"| The|
|00000390| 20 66 69 6e 61 6c 20 73 | 69 6d 70 6c 65 78 20 76 | final s|implex v|
|000003a0| 65 72 74 69 63 65 73 0d | 22 79 22 20 20 20 20 20 |ertices.|"y" |
|000003b0| 54 68 65 20 66 75 6e 63 | 74 69 6f 6e 20 76 61 6c |The func|tion val|
|000003c0| 75 65 73 20 61 74 20 65 | 61 63 68 20 76 65 72 74 |ues at e|ach vert|
|000003d0| 65 78 0d 0d 7e 0d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |ex..~.--|--------|
|000003e0| 2d 2d 20 45 78 61 6d 70 | 6c 65 20 2d 2d 2d 2d 2d |-- Examp|le -----|
|000003f0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 0d |--------|-------.|
|00000400| 2d 2d 20 66 69 74 20 61 | 20 63 75 72 76 65 20 74 |-- fit a| curve t|
|00000410| 6f 20 64 61 74 61 20 62 | 79 20 6d 69 6e 69 6d 69 |o data b|y minimi|
|00000420| 7a 69 6e 67 20 74 68 65 | 20 73 75 6d 20 6f 66 20 |zing the| sum of |
|00000430| 74 68 65 20 73 71 75 61 | 72 65 20 6f 66 20 74 68 |the squa|re of th|
|00000440| 65 20 64 69 66 66 65 72 | 65 6e 63 65 73 20 62 65 |e differ|ences be|
|00000450| 74 77 65 65 6e 20 64 61 | 74 61 20 61 6e 64 20 66 |tween da|ta and f|
|00000460| 69 74 2e 0d 0d 66 69 74 | 28 61 2c 78 29 20 3d 20 |it...fit|(a,x) = |
|00000470| 61 5b 31 5d 2b 61 5b 32 | 5d 2a 63 6f 73 28 61 5b |a[1]+a[2|]*cos(a[|
|00000480| 33 5d 2a 78 29 0d 0d 64 | 61 74 61 3d 72 65 61 64 |3]*x)..d|ata=read|
|00000490| 28 78 79 64 61 74 61 29 | 3b 20 78 78 5b 69 5d 3d |(xydata)|; xx[i]=|
|000004a0| 64 61 74 61 5b 69 2c 31 | 5d 3b 20 79 79 5b 69 5d |data[i,1|]; yy[i]|
|000004b0| 3d 64 61 74 61 5b 69 2c | 32 5d 20 0d 0d 65 72 72 |=data[i,|2] ..err|
|000004c0| 28 61 29 20 3d 20 73 75 | 6d 28 28 66 69 74 28 61 |(a) = su|m((fit(a|
|000004d0| 2c 78 78 5b 6a 5d 29 2d | 79 79 5b 6a 5d 29 5e 32 |,xx[j])-|yy[j])^2|
|000004e0| 2c 6a 2c 31 2c 63 6f 75 | 6e 74 28 64 61 74 61 29 |,j,1,cou|nt(data)|
|000004f0| 29 0d 0d 2d 2d 20 73 65 | 74 20 75 70 20 67 6c 6f |)..-- se|t up glo|
|00000500| 62 61 6c 73 20 66 6f 72 | 20 6d 69 6e 69 6d 69 7a |bals for| minimiz|
|00000510| 65 0d 66 28 61 29 20 3d | 20 65 72 72 28 61 29 0d |e.f(a) =| err(a).|
|00000520| 67 75 65 73 73 20 3d 20 | 7b 38 30 2c 2d 37 35 2c |guess = |{80,-75,|
|00000530| 31 7d 0d 64 65 6c 74 61 | 73 20 3d 20 2e 35 0d 74 |1}.delta|s = .5.t|
|00000540| 6f 6c 20 3d 20 31 65 2d | 35 0d 0d 70 6c 6f 74 20 |ol = 1e-|5..plot |
|00000550| 64 61 74 61 0d 0d 6d 69 | 6e 69 6d 69 7a 65 3a 3b |data..mi|nimize:;|
|00000560| 20 20 20 20 6d 69 6e 70 | 3a 7b 38 30 2e 32 2c 2d | minp|:{80.2,-|
|00000570| 37 33 2e 34 2c 30 2e 38 | 39 35 7d 0d 70 6c 6f 74 |73.4,0.8|95}.plot|
|00000580| 20 66 69 74 28 6d 69 6e | 70 2c 58 29 0d 0d 2d 2d | fit(min|p,X)..--|
|00000590| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 20 6d 69 6e 69 6d 69 |--------|- minimi|
|000005a0| 7a 61 74 69 6f 6e 20 72 | 6f 75 74 69 6e 65 73 20 |zation r|outines |
|000005b0| 2d 2d 2d 2d 2d 2d 2d 0d | 2d 2d 20 54 68 65 73 65 |-------.|-- These|
|000005c0| 20 72 6f 75 74 69 6e 65 | 73 20 75 73 65 20 74 68 | routine|s use th|
|000005d0| 65 20 22 64 6f 77 6e 68 | 69 6c 6c 20 73 69 6d 70 |e "downh|ill simp|
|000005e0| 6c 65 78 20 6d 65 74 68 | 6f 64 22 2e 20 41 20 73 |lex meth|od". A s|
|000005f0| 69 6d 70 6c 65 78 20 69 | 73 20 61 20 4e 20 64 69 |implex i|s a N di|
|00000600| 6d 65 6e 73 69 6f 6e 61 | 6c 20 67 65 6f 6d 65 74 |mensiona|l geomet|
|00000610| 72 69 63 61 6c 20 66 69 | 67 75 72 65 20 77 69 74 |rical fi|gure wit|
|00000620| 68 20 4e 2b 31 20 76 65 | 72 74 69 63 65 73 2e 20 |h N+1 ve|rtices. |
|00000630| 54 68 65 20 61 6c 67 6f | 72 69 74 68 69 6d 20 65 |The algo|rithim e|
|00000640| 76 61 6c 75 61 74 65 73 | 20 74 68 65 20 66 75 6e |valuates| the fun|
|00000650| 63 74 69 6f 6e 20 61 74 | 20 65 61 63 68 20 76 65 |ction at| each ve|
|00000660| 72 74 65 78 20 61 6e 64 | 20 73 74 65 70 73 20 74 |rtex and| steps t|
|00000670| 68 65 20 73 69 6d 70 6c | 65 78 20 74 6f 77 61 72 |he simpl|ex towar|
|00000680| 64 20 74 68 65 20 6d 69 | 6e 69 6d 75 6d 20 62 79 |d the mi|nimum by|
|00000690| 3a 20 31 29 20 72 65 66 | 6c 65 63 74 69 6e 67 20 |: 1) ref|lecting |
|000006a0| 61 20 76 65 72 74 65 78 | 20 61 77 61 79 20 66 72 |a vertex| away fr|
|000006b0| 6f 6d 20 74 68 65 20 66 | 75 6e 63 74 69 6f 6e 27 |om the f|unction'|
|000006c0| 73 20 68 69 67 68 65 73 | 74 20 70 6f 69 6e 74 2e |s highes|t point.|
|000006d0| 20 32 29 20 72 65 66 6c | 65 63 74 69 6f 6e 20 61 | 2) refl|ection a|
|000006e0| 6e 64 20 65 78 70 61 6e | 73 69 6f 6e 20 61 77 61 |nd expan|sion awa|
|000006f0| 79 20 66 72 6f 6d 20 74 | 68 65 20 68 69 67 68 65 |y from t|he highe|
|00000700| 73 74 20 70 6f 69 6e 74 | 2e 20 33 29 20 63 6f 6e |st point|. 3) con|
|00000710| 74 72 61 63 74 69 6f 6e | 20 61 77 61 79 20 66 72 |traction| away fr|
|00000720| 6f 6d 20 74 68 65 20 68 | 69 67 68 65 73 74 20 70 |om the h|ighest p|
|00000730| 6f 69 6e 74 2e 20 34 29 | 20 63 6f 6e 74 72 61 63 |oint. 4)| contrac|
|00000740| 74 69 6f 6e 20 69 6e 20 | 61 6c 6c 20 64 69 6d 65 |tion in |all dime|
|00000750| 6e 73 69 6f 6e 73 20 74 | 6f 77 61 72 64 20 74 68 |nsions t|oward th|
|00000760| 65 20 6c 6f 77 65 73 74 | 20 70 6f 69 6e 74 2e 0d |e lowest| point..|
|00000770| 0d 2d 2d 20 73 74 65 70 | 20 75 6e 74 69 6c 20 70 |.-- step| until p|
|00000780| 61 72 61 6d 65 74 65 72 | 73 20 63 68 61 6e 67 65 |arameter|s change|
|00000790| 20 62 79 20 6c 65 73 73 | 20 74 68 61 6e 20 74 6f | by less| than to|
|000007a0| 6c 0d 6d 69 6e 69 6d 69 | 7a 65 20 3d 20 69 6e 69 |l.minimi|ze = ini|
|000007b0| 74 2c 0d 20 20 20 20 20 | 20 20 20 20 20 20 73 74 |t,. | st|
|000007c0| 65 70 2c 0d 20 20 20 20 | 20 20 20 20 20 20 20 73 |ep,. | s|
|000007d0| 74 65 70 20 77 68 69 6c | 65 20 70 63 68 61 6e 67 |tep whil|e pchang|
|000007e0| 65 20 3e 20 74 6f 6c 2c | 0d 20 20 20 20 20 20 20 |e > tol,|. |
|000007f0| 20 20 20 20 6d 69 6e 70 | 3a 3d 70 73 75 6d 2f 6d | minp|:=psum/m|
|00000800| 0d 0d 70 63 68 61 6e 67 | 65 20 3d 20 73 75 6d 28 |..pchang|e = sum(|
|00000810| 28 61 62 73 28 70 5b 6c | 6f 77 65 73 74 5d 2d 70 |(abs(p[l|owest]-p|
|00000820| 5b 68 69 67 68 65 73 74 | 5d 29 2f 0d 20 20 20 20 |[highest|])/. |
|00000830| 20 20 20 20 20 20 20 28 | 61 62 73 28 70 5b 6c 6f | (|abs(p[lo|
|00000840| 77 65 73 74 5d 29 2b 61 | 62 73 28 70 5b 68 69 67 |west])+a|bs(p[hig|
|00000850| 68 65 73 74 5d 29 29 29 | 5b 69 69 5d 2c 69 69 2c |hest])))|[ii],ii,|
|00000860| 0d 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 31 |. | 1|
|00000870| 2c 6e 29 0d 0d 2d 2d 20 | 6d 6f 76 65 20 73 69 6d |,n)..-- |move sim|
|00000880| 70 6c 65 78 20 6f 6e 65 | 20 73 74 65 70 0d 73 74 |plex one| step.st|
|00000890| 65 70 20 3d 20 20 72 61 | 6e 6b 2c 0d 20 74 72 79 |ep = ra|nk,. try|
|000008a0| 28 2d 61 6c 70 68 61 29 | 2c 20 20 20 20 20 20 20 |(-alpha)|, |
|000008b0| 20 20 20 20 20 20 20 20 | 20 2d 2d 20 72 65 66 6c | | -- refl|
|000008c0| 65 63 74 20 66 72 6f 6d | 20 68 69 67 68 65 73 74 |ect from| highest|
|000008d0| 0d 20 74 72 79 28 67 61 | 6d 6d 61 29 20 77 68 65 |. try(ga|mma) whe|
|000008e0| 6e 20 79 74 72 79 20 b2 | 20 79 5b 6c 6f 77 65 73 |n ytry .| y[lowes|
|000008f0| 74 5d 2c 20 2d 2d 20 6b | 65 65 70 20 67 6f 69 6e |t], -- k|eep goin|
|00000900| 67 0d 20 28 79 73 61 76 | 65 3a 3d 79 5b 68 69 67 |g. (ysav|e:=y[hig|
|00000910| 68 65 73 74 5d 2c 0d 20 | 20 74 72 79 28 62 65 74 |hest],. | try(bet|
|00000920| 61 29 2c 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |a), | |
|00000930| 20 20 20 20 2d 2d 20 63 | 6f 6e 74 72 61 63 74 20 | -- c|ontract |
|00000940| 66 72 6f 6d 20 68 69 67 | 68 65 73 74 0d 20 20 73 |from hig|hest. s|
|00000950| 68 72 69 6e 6b 20 77 68 | 65 6e 20 79 74 72 79 20 |hrink wh|en ytry |
|00000960| b3 20 79 73 61 76 65 29 | 20 77 68 65 6e 20 79 74 |. ysave)| when yt|
|00000970| 72 79 20 b3 20 79 5b 68 | 69 67 68 5d 0d 0d 2d 2d |ry . y[h|igh]..--|
|00000980| 20 66 69 6e 64 20 6c 6f | 77 65 73 74 2c 20 68 69 | find lo|west, hi|
|00000990| 67 68 65 73 74 20 61 6e | 64 20 6e 65 78 74 20 68 |ghest an|d next h|
|000009a0| 69 67 68 65 73 74 20 76 | 65 72 74 65 78 0d 72 61 |ighest v|ertex.ra|
|000009b0| 6e 6b 20 3d 20 6c 6f 77 | 65 73 74 3a 3d 31 2c 68 |nk = low|est:=1,h|
|000009c0| 69 67 68 3a 3d 31 2c 68 | 69 67 68 65 73 74 3a 3d |igh:=1,h|ighest:=|
|000009d0| 32 2c 69 3a 3d 31 2c 0d | 20 20 20 28 6c 6f 77 65 |2,i:=1,.| (lowe|
|000009e0| 73 74 3a 3d 69 20 77 68 | 65 6e 20 79 5b 69 5d 3c |st:=i wh|en y[i]<|
|000009f0| 79 5b 6c 6f 77 65 73 74 | 5d 2c 2c 0d 20 20 20 20 |y[lowest|],,. |
|00000a00| 28 68 69 67 68 3a 3d 68 | 69 67 68 65 73 74 2c 68 |(high:=h|ighest,h|
|00000a10| 69 67 68 65 73 74 3a 3d | 69 29 20 77 68 65 6e 20 |ighest:=|i) when |
|00000a20| 79 5b 69 5d 3e 79 5b 68 | 69 67 68 65 73 74 5d 2c |y[i]>y[h|ighest],|
|00000a30| 2c 0d 20 20 20 20 68 69 | 67 68 3a 3d 69 20 77 68 |,. hi|gh:=i wh|
|00000a40| 65 6e 20 79 5b 69 5d 3e | 79 5b 68 69 67 68 5d 20 |en y[i]>|y[high] |
|00000a50| 61 6e 64 20 69 20 ad 20 | 68 69 67 68 65 73 74 2c |and i . |highest,|
|00000a60| 2c 0d 20 20 20 20 69 3a | 3d 69 2b 31 29 20 77 68 |,. i:|=i+1) wh|
|00000a70| 69 6c 65 20 69 b2 6d 0d | 0d 2d 2d 20 6d 6f 76 65 |ile i.m.|.-- move|
|00000a80| 20 68 69 67 68 65 73 74 | 20 76 65 72 74 65 78 20 | highest| vertex |
|00000a90| 74 68 72 6f 75 67 68 20 | 66 61 63 65 20 62 79 20 |through |face by |
|00000aa0| 66 61 63 0d 74 72 79 28 | 66 61 63 29 20 3d 20 70 |fac.try(|fac) = p|
|00000ab0| 74 72 79 3a 3d 70 73 75 | 6d 2a 28 31 2d 66 61 63 |try:=psu|m*(1-fac|
|00000ac0| 29 2f 6e 2d 0d 20 20 20 | 20 20 20 20 20 20 20 20 |)/n-. | |
|00000ad0| 20 20 20 20 20 20 20 70 | 5b 68 69 67 68 65 73 74 | p|[highest|
|00000ae0| 5d 2a 28 28 31 2d 66 61 | 63 29 2f 6e 2d 66 61 63 |]*((1-fa|c)/n-fac|
|00000af0| 29 2c 0d 20 20 20 20 79 | 74 72 79 3a 3d 66 28 70 |),. y|try:=f(p|
|00000b00| 74 72 79 29 2c 0d 20 20 | 20 20 28 79 5b 68 69 67 |try),. | (y[hig|
|00000b10| 68 65 73 74 5d 3a 3d 79 | 74 72 79 2c 0d 20 20 20 |hest]:=y|try,. |
|00000b20| 20 20 70 73 75 6d 3a 3d | 70 73 75 6d 2b 70 74 72 | psum:=|psum+ptr|
|00000b30| 79 2d 70 5b 68 69 67 68 | 65 73 74 5d 2c 0d 20 20 |y-p[high|est],. |
|00000b40| 20 20 20 70 3a 3d 72 65 | 70 6c 61 63 65 28 70 2c | p:=re|place(p,|
|00000b50| 68 69 67 68 65 73 74 2c | 70 74 72 79 29 29 20 77 |highest,|ptry)) w|
|00000b60| 68 65 6e 20 79 74 72 79 | 3c 79 5b 68 69 67 68 65 |hen ytry|<y[highe|
|00000b70| 73 74 5d 0d 0d 2d 2d 20 | 73 68 72 69 6e 6b 20 65 |st]..-- |shrink e|
|00000b80| 6e 74 69 72 65 20 73 69 | 6d 70 6c 65 78 0d 73 68 |ntire si|mplex.sh|
|00000b90| 72 69 6e 6b 70 28 6b 29 | 5b 6a 5d 20 3d 20 2e 35 |rinkp(k)|[j] = .5|
|00000ba0| 2a 28 70 5b 6b 2c 6a 5d | 2b 70 5b 6c 6f 77 65 73 |*(p[k,j]|+p[lowes|
|00000bb0| 74 2c 6a 5d 29 20 64 69 | 6d 5b 6e 5d 0d 73 68 72 |t,j]) di|m[n].shr|
|00000bc0| 69 6e 6b 20 3d 20 6b 6b | 3a 3d 31 2c 20 20 20 20 |ink = kk|:=1, |
|00000bd0| 20 20 0d 20 20 28 28 70 | 73 75 6d 3a 3d 73 68 72 | . ((p|sum:=shr|
|00000be0| 69 6e 6b 70 28 6b 6b 29 | 2c 0d 20 20 20 20 70 3a |inkp(kk)|,. p:|
|00000bf0| 3d 72 65 70 6c 61 63 65 | 28 70 2c 6b 6b 2c 70 73 |=replace|(p,kk,ps|
|00000c00| 75 6d 29 29 20 77 68 65 | 6e 20 6b 6b ad 6c 6f 77 |um)) whe|n kk.low|
|00000c10| 65 73 74 2c 2c 0d 20 20 | 20 20 6b 6b 3a 3d 6b 6b |est,,. | kk:=kk|
|00000c20| 2b 31 20 29 20 77 68 69 | 6c 65 20 6b 6b b2 6d 2c |+1 ) whi|le kk.m,|
|00000c30| 0d 20 20 79 3a 3d 66 70 | 0d 0d 2d 2d 20 64 65 66 |. y:=fp|..-- def|
|00000c40| 69 6e 65 20 66 69 6e 69 | 74 65 20 61 72 72 61 79 |ine fini|te array|
|00000c50| 73 20 73 6f 20 74 68 65 | 79 20 63 61 6e 20 62 65 |s so the|y can be|
|00000c60| 20 61 73 73 69 67 6e 65 | 64 0d 73 75 6d 70 5b 6a | assigne|d.sump[j|
|00000c70| 5d 20 3d 20 73 75 6d 28 | 70 5b 69 69 2c 6a 5d 2c |] = sum(|p[ii,j],|
|00000c80| 69 69 2c 31 2c 6d 29 20 | 64 69 6d 5b 6e 5d 0d 69 |ii,1,m) |dim[n].i|
|00000c90| 6e 69 74 70 5b 69 2c 6a | 5d 3d 20 67 75 65 73 73 |nitp[i,j|]= guess|
|00000ca0| 5b 6a 5d 2b 28 64 65 6c | 74 61 73 5b 6a 5d 20 77 |[j]+(del|tas[j] w|
|00000cb0| 68 65 6e 20 69 3d 6a 2c | 30 29 20 64 69 6d 5b 6d |hen i=j,|0) dim[m|
|00000cc0| 2c 6e 5d 0d 66 70 5b 69 | 5d 3d 66 28 70 5b 69 5d |,n].fp[i|]=f(p[i]|
|00000cd0| 29 20 64 69 6d 5b 6d 5d | 0d 0d 69 6e 69 74 20 3d |) dim[m]|..init =|
|00000ce0| 20 6e 3a 3d 63 6f 75 6e | 74 28 67 75 65 73 73 29 | n:=coun|t(guess)|
|00000cf0| 2c 20 6d 3a 3d 6e 2b 31 | 2c 0d 20 20 20 20 20 20 |, m:=n+1|,. |
|00000d00| 20 70 3a 3d 69 6e 69 74 | 70 2c 0d 20 20 20 20 20 | p:=init|p,. |
|00000d10| 20 20 70 73 75 6d 3a 3d | 73 75 6d 70 2c 0d 20 20 | psum:=|sump,. |
|00000d20| 20 20 20 20 20 79 3a 3d | 66 70 0d 0d 72 65 70 6c | y:=|fp..repl|
|00000d30| 61 63 65 28 61 72 72 61 | 79 2c 69 6e 64 65 78 2c |ace(arra|y,index,|
|00000d40| 6e 65 77 76 61 6c 29 5b | 69 5d 20 3d 20 6e 65 77 |newval)[|i] = new|
|00000d50| 76 61 6c 20 77 68 65 6e | 20 69 3d 69 6e 64 65 78 |val when| i=index|
|00000d60| 2c 0d 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |,. | |
|00000d70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d80| 20 20 20 61 72 72 61 79 | 5b 69 5d 0d 0d 2d 2d 20 | array|[i]..-- |
|00000d90| 74 75 6e 65 61 62 6c 65 | 20 63 6f 6e 73 74 61 6e |tuneable| constan|
|00000da0| 74 73 0d 61 6c 70 68 61 | 3d 31 3b 20 62 65 74 61 |ts.alpha|=1; beta|
|00000db0| 3d 2e 35 3b 20 67 61 6d | 6d 61 3d 32 0d 00 00 00 |=.5; gam|ma=2....|
|00000dc0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000dd0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000de0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000df0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000e00| 00 00 01 00 00 00 01 3c | 00 00 00 3c 00 00 00 52 |.......<|...<...R|
|00000e10| 30 28 00 0a d0 68 00 08 | b0 41 62 02 30 01 31 40 |0(...h..|.Ab.0.1@|
|00000e20| 00 08 d0 a8 00 04 20 50 | a0 24 20 5f 4e 75 4e 5e |...... P|.$ _NuN^|
|00000e30| 08 6d 69 6e 69 6d 69 7a | 65 6e 02 00 00 00 54 45 |.minimiz|en....TE|
|00000e40| 58 54 4d 50 61 64 01 00 | 00 9c 00 00 00 00 00 00 |XTMPad..|........|
|00000e50| 00 00 54 45 58 54 4d 50 | 61 64 01 00 00 9c 00 00 |..TEXTMP|ad......|
|00000e60| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000e70| 00 00 a8 49 fa d4 00 00 | 0d 3d 00 00 01 8e 67 5c |...I....|.=....g\|
|00000e80| 6a 16 04 00 00 cc 67 54 | 6a 06 52 00 6a 1e 60 50 |j.....gT|j.R.j.`P|
|00000e90| 04 00 00 32 67 26 60 48 | 04 00 00 1f 67 42 6a 06 |...2g&`H|....gBj.|
|00000ea0| 52 00 6a 28 60 3a 55 00 | 6a 36 60 30 2f 0c 3f 3c |R.j(`:U.|j6`0/.?<|
|00000eb0| 28 29 4e ba ff 88 28 40 | 5c 8f 60 24 2f 0c 3f 3c |()N...(@|\.`$/.?<|
|00000ec0| 5b 5d 4e ba ff 78 28 40 | 5c 8f 60 14 2f 0c 3f 3c |[]N..x(@|\.`./.?<|
|00000ed0| 7b 7d 4e ba ff 68 28 40 | 5c 8f 60 04 28 6d a7 e2 |{}N..h(@|\.`.(m..|
|00000ee0| 52 8c b9 ed a7 e2 65 00 | ff 72 20 0c 4c df 10 80 |R.....e.|.r .L...|
|00000ef0| 4e 5e 4e 75 4e 56 ff f8 | 48 e7 1f 38 42 a7 a9 24 |N^NuNV..|H..8B..$|
|00000f00| 00 00 00 20 00 00 00 03 | 00 00 3f f9 8e fa 35 12 |... ....|..?...5.|
|00000f10| 94 e9 c8 ae 01 58 01 2e | 00 03 00 28 00 a8 01 2d |.....X..|...(...-|
|00000f20| 01 53 00 28 00 00 00 14 | 00 04 06 4d 6f 6e 61 63 |.S.(....|...Monac|
|00000f30| 6f 01 39 06 4d 6f 6e 61 | 63 6f 01 39 00 00 01 00 |o.9.Mona|co.9....|
|00000f40| 00 00 01 3c 00 00 00 3c | 00 00 00 52 00 3a c7 c8 |...<...<|...R.:..|
|00000f50| 06 40 00 00 00 1c 00 46 | 00 01 50 52 65 66 00 00 |.@.....F|..PRef..|
|00000f60| 00 12 53 54 52 23 00 00 | 00 1e 00 80 ff ff 00 00 |..STR#..|........|
|00000f70| 00 00 00 3a d5 60 00 81 | 00 00 00 00 00 24 00 3a |...:.`..|.....$.:|
|00000f80| d5 20 0b 66 6f 6e 74 20 | 26 20 73 69 7a 65 00 00 |. .font |& size..|
|00000f90| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000fa0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000fb0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000fc0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000fd0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000fe0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000ff0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
+--------+-------------------------+-------------------------+--------+--------+